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LETTER TO THE EDITOR 

Mode coupling and the microscopic derivation of a rate 
constant for isomerisations in liquids 

Ariel Fernindez 
Max-Planck-Institut fur biophysikalische Chemie, Am Fassberg, D-3400 Gottingen, Federal 
Republic of Germany, and Institute for Nonlinear Science, 8-039, University of California 
at San Diego, La Jolla, CA 92093, USA 

Received 10 May 1989 

Abstract. We derive an effective perturbed Hamiltonian for a parabolic barrier with 
non-linear coupling between the reactive mode and the fast-relaxing modes. The coupling 
is introduced perturbarioe/y. In the long-wavelength limit, the treatment yields the correct 
analytical form of the macroscopic rate constant for isomerisations in liquids provided the 
separation of relaxation timescales is consistent with the perturbation parameter. 

A detailed knowledge of the coupling of fast-relaxing modes to reactive modes is 
paramount to understand deviations from transition state theory (TST) for rates of 
isomerisations in solution. Such an understanding does not necessarily entail a deriva- 
tion of the macroscopic rate constant starting from the actual Hamiltonian of the 
system. To take into account the full phase space as a starting point might pose a 
formidable problem [l-31. On the other hand, a derivation which makes use of a 
probability distribution Q = Q ( X ,  P,, t ) ,  where X is the reaction coordinate and P, 
its conjugated momentum, must be regarded as provisional insofar as a direct under- 
standing of the coupling of fast modes to X and P, is not available. 

It is well established that a separation in the characteristic timescales for the slow 
dominant degree of freedom, 7,, and the fast-relaxing variables, 7 F ,  does not in any 
way warrant the success of a TST treatment [4,5]: the coupling of modes involved at 
the top of the reaction barrier is directly responsible for the deviations from TST. We 
shall introduce an effective Hamiltonian associated with a neighbourhood at the top 
of the barrier so that the coupling is included perturbatiuely. It is intuitively obvious 
that a consistency argument would require that the perturbation parameter be the small 
characteristic parameter for the system: E = T ~ / T , .  Thus, the question to be answered 
in this paper can be posed as follows: given that the solvent rearranges on the short 
timescale T~ every time an infrequent isomerisation event occurs, how does its participa- 
tion reflect itself in the perturbative mode coupling at the top of the barrier? 

At this point, a digression is in order. The reaction coordinate X should be regarded 
as coincident with the internal coordinate in the gas phase, as is the case when the 
presence of the solvent merely renormalises the gas-phase free-energy surface [ 5 , 6 ] .  
A distinctively different situation, not treated in this work, arises when X is a combina- 
tion of an effective solvent coordinate and an internal solute coordinate (see for example 
~ 7 1 ) .  
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In order to address the issue of mode coupling, we need to consider a third timescale, 
besides the ones mentioned above. This one, denoted Tb, corresponds to the motion 
along X in a neighbourhood of the barrier top [8]. The full set of inequalities that 
need to be satisfied so that our treatment is applicable is 

TF<< Tb<< 7%. (1) 

The strategy employed could be best defined as a partial inversion of the problem of 
integration of the Liouville equation in order to derive a time-dependent macroscopic 
distribution. The inversion is only partial since we do not intend to retrieve information 
from phase space [9]. More specifically, let NR(t) denote the number of molecules 
which remain as reactants at time t (reciprocally, Np( t )  denotes the number of product 
molecules and NR+ Np= N is a constant in a closed system). Then, given a macro- 
scopic distribution tp with 

cp = dGNR, t )  SNR= NR-( NR) (2) 

where the angular brackets denote thermal or statistical average, we search for a 
microscopic distribution B ( X ,  P,, {Si, Pi}, t )  = B, where Si denotes generically a fast 
degree of freedom and Pi its conjugated momentum [9,10]. In general, the distribution 
B will not satisfy Liouville's equation but it must fulfil the following conditions. 

( a )  Let G be any functional (such as the number NP of molecules which have 
reacted) of X and P,; then 

( G ) B = ( G )  (3) 

where the subscript B denotes an average with respect to that distribution. 

A satisfies the Liouville equation. 
( 6 )  There exists a projection operator U such that UA = B, where the distribution 

One can construct B as follows [lo]: 

B = z(S[SNk- sN~])-'tp( SNR, t)S[SNk- SNR] d6NR (4) J 
where SNk is regarded as the macroscopic variable, in principle a function of the 
position and momenta for all particles, SNR is a specific value of that variable and 
the symbol I( ) stands for integration over all phase space. 

The motivation for implementing this route for inversion lies in the fact that we 
wish to compare the long-wavelength-limit behaviour of the dynamics projected by 
(1 - U )  with the macroscopic dynamics as defined by the memory kernel K ( t )  associ- 
ated with the time correlations of SNR. 

We are now in a position to state the problem we shall focus on more clearly. 
Assuming we have determined the correlation C ( t )  for SNR using as input data the 
macroscopic rate law and the separation of relaxation timescales, we aim at determining 
an effective Hamiltonian He, which has associated with it the distribution B. This is 
obviously an inversion problem, in general intractable except for the fact that the 
region of interest to us is a neighbourhood of the top of the bamer and, therefore, we 
should be able to introduce the coupling perturbatively. 

The relevant transport coefficient in our approach is T;', a quantity we wish to 
compare with the long-wavelength limit of the dynamics which results after applying 
the projector U. Given an arbitrary distribution A of microstates, the operator U is 
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defined as 

UA = 

The transport coefficient is related to the memory kernel K ( t )  by [4, 111 

[ ( 6 ( 6 N k  - 6 N ~ ) ) l - l  (A6 ( 6hrk - 6NR)) 6 ( 6hrk - 6NR) d6NR. ( 5 )  I 
T,'= d t K ( t ) [ l + O ( ~ ) ]  ( 6 )  
- loT 

where T satisfies 

TF<< T<c T x .  (7)  

However, since we wish to introduce He, in a neighbourhood of the barrier top, T 
must satisfy the stronger condition 

TF<< T<< Tb. (8) 

The kernel K (  t )  has been estimated for equilibrium considerations. Additional input 
data on the macroscopic rate law and the timescale separation are required. This 
yields [ 113 

K ( f )  = c(o)-' (??R eEL'??R) E = [l  - U] (9) 

where L is the Liouville operator. 
This expression can be simplified further for the case of low solute concentration, 

where one can safely assume that isomerisation events are uncorrelated. In other words 

NR- N'"x-(X-X,) (10) 

where x- is the characteristic function for the negative real axis and X, is the coordinate 
value for the free energy maximum. Making use of this assumption, one obtains the 
nearly standard result 

T;'= (mRmp)-'(Px6(X-Xo)(1 -x - ) (X(T) -Xo) ) [ l+O(~) ]  (11) 
where ?nR and mp are the mole fractions of reactant and product respectively. The 
quantities are fixed once the reaction has reached equilibrium. 

The reason we can invert resides in the fact that K ( t )  can be alternatively written 
in terms of the projector E. That is so since K ( t )  relaxes on the timescale rF; that is, 
it comprises the dynamics orthogonal to the slow motion. Thus we obtain (cf [ lo])  

(12) 

(13) 
Thus, if cp is the distribution which yields K ( t )  then B, being the microscopic 

K (  t )  = I ( M (  SNR)S( 6Nk - 6NR) exp[EitL]M( N k ) )  

M (  6NR) = E6( 6 N k  - 6NR)iLSNk. 

where M(6NR) is given by 

distribution induced by cp, satisfies the integral equation 

cp (SN,,  t ) N"26 (X - X,) = I F  (I Bdpx> (14) 

where IF( ) denotes integration over all fast variables. Equation (14) follows readily 
if one notices that, by definition of B, the following relation must be satisfied for any 
functional F(sN,(x)) = F(x):  

(F(6NR(X)))q = (F(x))B* (15) 
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Thus, the inversion problem is now reduced to finding a Hamiltonian Heff= 
Heff(X, Px, { S i ,  P i } ,  E )  which yields E. 

Direct inspection of (14) reveals that it suffices to construct He, so that, after 
integration of the equations of motion along the non-reactive modes, we obtain the 
distribution D defined as 

(16) DW, p x ,  t )  = ZF(B). 

We shall introduce Heff as a Hamiltonian diagonal in the mass-weighted coordinates 
and momenta with perturbative coupling non-linear in the bath coordinates: 

Heff= -w:,x2+- + z w ; s ; + -  +EXH(S) ( "1 2 ( i  p9 2 

where 7;' = w,,,; the bath is represented as a set of uncoupled harmonic oscillators 
and the coupling to the reaction coordinate is introduced perturbatively, via the term 
in E, with H ( S )  an analytic function. The non-adiabatic frequency corresponding to 
fast motion at the barrier top is wna, while the frequencies for the bath oscillators are 
the wi. 

Following standard procedures to solve perturbatively for the bath coordinates, we 
obtain an implicit relation to be satisfied by the Si [12]: 

where Hi = S H / S S i .  Since H is analytic, we can write 

H ( S )  = H y i , S i ,  . . . si,. 
j,i. 

The implicit relation (18) will now be solved perturbatively, in the form of a series 

(20) 

expansion: 

Si(  t )  = syy t )  + &asi( t )  + E262Si( t )  + . . . 
where the zeroth-order term is the solution obtained for a bath uncoupled to X (that 
is, taking the limit E + O )  and 

8sj(t)=- dT y.(s'O', t, T ) ~ , ( T ) +  y.(s''), t ,  t)x(t)- y(S'O', t,O)X(O) lo1 
where 

The perturbation expansion must be consistent with the fluctuation-dissipation 
theorem; thus, one must retain dissipative terms to order E' if only fluctuating terms 
of order E are considered. Thus, the lowest-order fluctuating term which contributes 
to Px is EH(S"') = ~f( t ) .  The first dissipative term, of order E * ,  is 

E 2  c q (S'O') asj 
j 

= E2X(r)[V(r, t)+aV(t,  ~ ) ] -E*x(o ) [v (~ ,  o ) + s v ( ~ , o ) ]  

- E ~  J o 1 d T P x ( 7 ) [ V ( t ,  ~ ) + 6 V ( t ,  T)] 
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where 

V (  r, 7 )  = ( Hj (S(O) w, (S(O), t, 7 ) )  
i 

and SV( t, 7 )  represents the deviation from the statistical average. 

can be absorbed into a virtual Hamiltonian defined as 
The term with V ( t ,  t)  in (23) is a shift in the ( X ,  P,)-system potential energy that 

P 2  E 2  

2 2  H v ( X ,  P x )  = - w i a X 2 + L - -  V ( t ,  t )X2.  

This reduction is possible only because V ( t ,  t )  is actually independent of t, since 
V (  t, t ' )  = Vo( t - t ' ) .  The retention of the dissipative and fluctuating terms to lowest 
order in E gives 

Thus, the distribution D satisfies the Fokker-Planck equation 

Px 

In this equation, kB is the Boltzmann constant and T the absolute temperature. 
Equation (27) is thermodynamically consistent since ( f2(  t ) )  = k B W o ( 0 ) ,  and compat- 
ible with the timescale separation, since we have assumed the expansion parameter to 
be E = T ~ / T , .  Thus, the generalised Langevin equation obtained corresponds to an E 

perturbation of the TST result. 
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